Self-Assembled Gold Nano-Ripple Formation by Gas Cluster Ion Beam Bombardment

نویسندگان

  • Buddhi P. Tilakaratne
  • Quark Y. Chen
  • Wei-Kan Chu
چکیده

In this study, we used a 30 keV argon cluster ion beam bombardment to investigate the dynamic processes during nano-ripple formation on gold surfaces. Atomic force microscope analysis shows that the gold surface has maximum roughness at an incident angle of 60° from the surface normal; moreover, at this angle, and for an applied fluence of 3 × 1016 clusters/cm², the aspect ratio of the nano-ripple pattern is in the range of ~50%. Rutherford backscattering spectrometry analysis reveals a formation of a surface gradient due to prolonged gas cluster ion bombardment, although the surface roughness remains consistent throughout the bombarded surface area. As a result, significant mass redistribution is triggered by gas cluster ion beam bombardment at room temperature. Where mass redistribution is responsible for nano-ripple formation, the surface erosion process refines the formed nano-ripple structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of new carbon paste electrodes based on gold nano-particles self-assembled to mercapto compounds as suitable ionophores for potentiometric determination of Copper ions

In the present study, we investigate the potentiometric behavior of Cu2+ carbon paste electrodes based on two mercapto compounds 2-Ethylmino-5-Mercapto-1,3,4-Thiadiazole (EAMT) and 2-Acetylamino-5-mercapto-1,3,4-thiadiazole (AAMT) self-assembled on gold nano-paricle (GNP) as ionophore. Then, the results obtained from the modified electrodes are compared. The self-assembled ionophores exhibit a ...

متن کامل

Gold-thiolate cluster emission from SAMs under keV ion bombardment: Experiments and molecular dynamics simulations

In this contribution the emission of gold-molecule cluster ions from self-assembled monolayers (SAMs) of alkanethiols on gold is investigated using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Layers of alkanethiols [CH3(CH2)nSH] with various chain lengths (n 1⁄4 8, 12, 16) have been chosen because they form well-ordered molecular monolayers on gold. First, we compare and interpre...

متن کامل

Ion-Beam-Directed Self-Ordering of Ga Nanodroplets on GaAs Surfaces

Ordered nanodroplet arrays and aligned nanodroplet chains are fabricated using ion-beam-directed self-organization. The morphological evolution of nanodroplets formed on GaAs (100) substrates under ion beam bombardment is characterized by scanning electron microscopy and atomic force microscopy. Ordered Ga nanodroplets are self-assembled under ion beam bombardment at off-normal incidence angles...

متن کامل

Ultra-Sharpening of Diamond Stylus by 500 eV O+/O2 + Ion Beam Machining without Facet and Ripple Formation

The price of single point diamond tools with a sharp tip is very high due to complex machining process and highly expensive machining equipments. Yet, the performance is not quite satisfactory. In this paper, we have presented a very simple and cost effective machining process for the sharpening and polishing of diamond stylus using low energy reactive ion beam machining (RIBM). In our method, ...

متن کامل

Focused ion beam milling of diamond: Effects of H2O on yield, surface morphology and microstructure

The effects of H2O vapor introduced during focused ion beam ~FIB! milling of diamond~100! are examined. In particular, we determine the yield, surface morphology, and microstructural damage that results from FIB sputtering and H2O-assisted FIB milling processes. Experiments involving 20 keV Ga bombardment to doses ;10 ions/cm are conducted at a number of fixed ion incidence angles, u. For each ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017